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Abstract
We examine various generalizations, e.g. exactly solvable, quasi-exactly
solvable and non-Hermitian variants, of a quantum nonlinear oscillator. For all
these cases, the same mass function has been used and it has also been shown
that the new exactly solvable potentials possess shape invariance symmetry.
The solutions are obtained in terms of classical orthogonal polynomials.

PACS numbers: 03.65.−w, 03.65.Ge

1. Introduction

Recently, there has been a surge of interest in obtaining exact [1] and quasi-exact solutions
[2] to the position-dependent mass Schrödinger equation (PDMSE) for various potentials and
mass functions by using various methods such as Lie algebraic techniques [3], supersymmetric
quantum mechanics (factorization method) [4, 5], the shape invariance approach [6], point
canonical transformation [7], path integral formalism [8], the transfer matrix method [9],
etc. Apart from the intrinsic interest, the motivation behind this issue arises because of
the relevance of position-dependent mass in describing the physics of many microstructures
of current interest, such as compositionally graded crystals [10], quantum dots [11], 3He
clusters [12], metal clusters [13], etc. The concept of position-dependent mass comes from
the effective mass approximation [14] which is a useful tool for studying the motion of carrier
electrons in pure crystals and also for the virtual-crystal approximation in the treatment of
homogeneous alloys (where the actual potential is approximated by a periodic potential) as
well as in graded mixed semiconductors (where the potential is not periodic). Attention to the
effective mass approach stems from the extraordinary development in crystallographic growth
techniques, which allow for the production of a non-uniform semiconductor specimen with
abrupt heterojunctions. In these mesoscopic materials, the effective mass of the charge carriers
is position dependent. Consequently, the study of the effective mass Schrödinger equation
becomes relevant for a deeper understanding of the non-trivial quantum effects observed on
these nanostructures. The position-dependent (effective) mass is also used in the construction
of pseudo-potentials, which have a significant computational advantage in the quantum Monte
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Carlo method [15]. It has also been found that such equations appear in very different areas.
For example, it has been shown that a constant mass Schrödinger equation in curved space and
equations based on deformed commutation relations can be interpreted in terms of PDMSE in
the flat space [16] and a PT symmetric cubic anharmonic oscillator [17].

The nonlinear differential equation

(1 + λx2)ẍ − (λx)ẋ2 + α2x = 0, λ > 0, (1)

was studied by Mathews and Lakshmanan in [18, 19] as an example of a nonlinear oscillator,
and it was shown that the solution of (1) is

x = Asin(ωt + φ) (2)

with the following additional restriction linking frequency and amplitude:

ω2 = α2

1 + λA2
. (3)

Furthermore, (1) can be obtained from the Lagrangian [18]

L = 1

2

1

(1 + λx2)
(ẋ2 − α2x2) (4)

so that both the kinetic and the potential terms depend on the same parameter λ. So this
nonlinear oscillator must be considered as a particular case of a system with a position-
dependent effective mass. Recently in a series of papers [20, 21], this particular nonlinear
system has been generalized to higher dimensions and various properties of this system have
been studied. The classical Hamiltonian corresponding to the λ-dependent oscillator is given
by [18, 21]

H =
(

1

2m

)
P 2

x +

(
1

2

)
g

(
x2

1 + λx2

)
, Px =

√
1 + λx2px, g = mα2, (5)

px being the canonically conjugate momentum defined by px = ∂L
∂ẋ

, L the Lagrangian and m
the mass.

It has been shown in [21] that in the space L2(�, dμ) where dμ = (
1√

1+λx2

)
dx, the

differential operator
√

1 + λx2 d
dx

is skew self-adjoint. Therefore, in contrast to the naive
expectation of ordering ambiguities, the transition from the classical system to the quantum
one is given by defining the momentum operator

Px = −i
√

1 + λx2
d

dx
(6)

so that

(1 + λx2)p2
x → −

(√
1 + λx2

d

dx

) (√
1 + λx2

d

dx

)
.

Therefore, the quantum version of the Hamiltonian (5) with h̄ = 1 becomes [21]

Ĥ = − 1

2m
(1 + λx2)

d2

dx2
−

(
1

2m

)
λx

d

dx
+

1

2
g

(
1

1 + λx2

)
, (7)

where g = α(mα + λ). It is to be noted that in [21], the value of the parameter g has been
slightly modified from that given in equation (5).

It may be pointed out that this λ-dependent system can be considered as a deformation
of the standard harmonic oscillator in the sense that for λ → 0, all the characteristics of the
linear oscillator are recovered.

In [21], PDMSE corresponding to this nonlinear oscillator has been solved exactly as a
Sturm–Liouville problem, and λ-dependent eigenvalues and eigenfunctions were obtained for
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both λ > 0 and λ < 0. The λ-dependent wavefunctions were shown to be related to a family
of orthogonal polynomials that can be considered as λ-deformations of the standard Hermite
polynomials. Also, the Schrödinger factorization formalism, intertwining method and shape
invariance approach were discussed with reference to this particular quantum Hamiltonian.
The existence of a λ-dependent Rodrigues formula, a generating function and λ-dependent
recursion relations were obtained.

In this paper our objective is to re-examine this problem and obtain a closed-form
expression for the normalization constant, modified generating function and recursion relations
for �

(= λ
α

)
-deformed Hermite polynomials. A relation between the �-deformed Hermite

polynomials and Jacobi polynomials will also be obtained. We shall also obtain a number
of exactly solvable, quasi-exactly solvable and non-Hermitian potentials corresponding to the
same mass function m(x) = (1 + λx2)−1. It will be seen that some of these potentials are
generalizations of the nonlinear oscillator potentials while the others are of different types.
It will be shown that these exactly solvable potentials are shape invariant. Moreover, these
potentials can also be complexified and by doing so we shall also obtain a number of exactly
solvable non-Hermitian potentials within the framework of PDMSE. As a method of obtaining
these results, we shall use point canonical transformation consisting of a change of coordinate
only. The organization of the paper is as follows: in section 2, we shall obtain exactly solvable
potentials and a relation between �-deformed Hermite polynomials and Jacobi polynomials;
in section 3, it is shown that the exactly solvable potentials are shape invariant; in section 4, we
obtain exactly solvable non-Hermitian potentials; section 5 deals with complex quasi-exactly
solvable potentials and finally section 6 is devoted to a discussion.

2. Exactly solvable potentials for the mass m(x) =
( 1

1+λx2

)
Here we shall obtain exact solutions to PDMSE for a number of potentials with the same
mass function m(x) = (

1
1+λx2

)
. For this purpose, we first write PDMSE corresponding to the

Hamiltonian given in equation (7) with m = 1 and λ > 0 as[
−(1 + λx2)

d2ψ

dx2
− λx

dψ

dx
− g

λ

(
1

1 + λx2

)]
ψ = Eψ (8)

E = 2e − g

λ
, (9)

where e is the energy for the Hamiltonian (7). Now expanding (1 + λx2)−1 for |x| < 1√
λ

, we
can write the potential of equation (8) as

V (x) = −g

λ
+ gx2 − λO(x3). (10)

It is clear from (10) that the term (− g

λ
) in equation (9) cancels from both sides of

equation (8), so that the new eigenvalues (9) are actually the old eigenvalues e of the
Hamiltonian (7). Also, as λ → 0, the potential and the eigenvalues of equation (8) reduce to
those of a linear harmonic oscillator.

Now generalizing the potential of equation (8) as below, the corresponding PDMSE reads
as

− (1 + λx2)
d2ψ

dx2
− λx

dψ

dx
+

[
B2 − A2 − A

√
λ

1 + λx2
+ B(2A +

√
λ)

( √
λx

1 + λx2

)
+ A2

]
ψ = Eψ.

(11)
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It is seen from (11) that if we put B = 0, then the potential reduces to that of the nonlinear
oscillator with g

λ
= A2 + A

√
λ. It is to be noted that this generalization should correctly

reproduce the λ → 0 limit, in which case equation (11) reduces to the Schrödinger equation
for a linear harmonic oscillator. In the appendix we have shown that in the limit λ → 0 and
for A = α√

λ
(which is one of the solution of the quadratic equation A2 + A

√
λ = g

λ
), B = 0

the potential of equation (11), the energy eigenvalues (18) and the wavefunction given in (19)
reduce to those of a linear harmonic oscillator. This particular generalization is made so that
it corresponds to the hyperbolic Scarf II potential [22] in the constant mass case. In order to
solve (11), we now perform a transformation involving a change of variable given by

z =
∫

dx√
F(x)

= 1√
λ

sinh−1(
√

λx), (12)

where

F(x) = 1 + λx2, λ > 0. (13)

Under transformation (12), equation (11) reduces to a Schrödinger equation

−d2ψ

dz2
+ V (z)ψ(z) = Eψ(z), (14)

where the potential V (z) is given by

V (z) = (B2 − A2 − A
√

λ) sech2(z
√

λ) + B(2A +
√

λ) tanh(z
√

λ) sech(z
√

λ) + A2. (15)

Potential (15) is a standard solvable potential and the solutions are given by [22]

ψn(z) = Nni
n(1 + sinh2(z

√
λ))−

s
2 e−rtan−1(sinh(z

√
λ))P

(ir−s− 1
2 ,−ir−s− 1

2 )
n (i sinh(z

√
λ), (16)

where Nn is the normalization constant, s = A√
λ
, r = B√

λ
and P

(α,β)
n (x) is the Jacobi polynomial

[24]. The normalization constants Nn, n = 0, 1, 2, . . . , are given by [23]

Nn =
[√

λn!(s − n)

(
s − ir − n + 1

2

)



(
s + ir − n + 1

2

)
π2−2s
(2s − n + 1)

]1/2

. (17)

The eigenvalues En are given by

En = n
√

λ(2A − n
√

λ), n = 0, 1, 2, . . . < s. (18)

Subsequently by performing the inverse of transformation (12), we find the solution to PDMSE
(11) as

ψn(x) =
[√

λn!(s − n)

(
s − ir − n + 1

2

)



(
s + ir − n + 1

2

)
π2−2s
(2s − n + 1)

]1/2

(19)

in(1 + λx2)−
s
2 e−rtan−1(x

√
λ)P

(ir−s− 1
2 ,−ir−s− 1

2 )
n (ix

√
λ), n = 0, 1, 2, · · · < s

(
= A√

λ

)
.

At this point, it is natural to ask the following question: are there other solvable potentials
corresponding to the mass function m(x) = (

1
1+λx2

)
? The answer to this question is in the

affirmative. The procedure to obtain these potentials is similar and so instead of treating
each case separately, we have presented the potentials and the corresponding solutions in
table 1. The first two and the last two potentials in table 1 are actually the generalizations
of the nonlinear oscillator potential. Although the other two potentials in the table are not
generalizations of the nonlinear oscillator potential, nevertheless they are exactly solvable
potentials with the same mass function.
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Table 1. Exactly solvable shape invariant potentials V (x), superpotential W(x), energy eigenvalue En and wavefunctions ψn(x), where s = A√
λ
, r = B√

λ
, r1 = B

λ
, a = r1

s−n
, s1 =

s − n + a, s2 = s − n − a, s3 = a − n − s, s4 = −(s + n + a), s′ = A√|λ| &r ′ = B√|λ| . The first four entries correspond to λ > 0 and the last two correspond to λ < 0.

V (x) W(x) En ψn(x)
ai, i =
0, 1, . . . R(ai)

B2−A2−A
√

λ

1+λx2 + B(2A +√
λ)

√
λx

1+λx2 + A2

A
√

λx√
1+λx2 + B 1√

1+λx2 n
√

λ(2A − n
√

λ) in(1 + λx2)− s
2 e−rtan−1(x

√
λ)

P
(ir−s− 1

2 ,−ir−s− 1
2 )

n (ix
√

λ)

(A − i
√

λ, B)
√

λ[2A − (2i + 1)
√

λ]

A2 + B2

A2 − A(A+
√

λ)

1+λx2 +

2B
√

λx√
1+λx2 , B < A2

A
√

λx√
1+λx2 + B

A
A2 + B2

A2 − (A −
n
√

λ)2 − B2

(A−n
√

λ)2

(
1 − x

√
λ√

1+λx2

) s1
2

(
1 + x

√
λ√

1+λx2

) s2
2

P (s1,s2)
n

(
x
√

λ√
1+λx2

) (A − i
√

λ, B) A2 − [A − (i + 1)
√

λ]2

+ B2

A2 − B2

[A−(i+1)
√

λ]2

A2 + B2

A2 − 2B
√

1+λx2√
λx

+
A(A−√

λ)

λx2 , B > A2

B

A
− A

√
1+λx2

x
√

λ
A2 + B2

A2 − (A +

n
√

λ)2 − B2

(A+n
√

λ)2

(√
1+λx2

x
√

λ
− 1

) s3
2

(√
1+λx2

x
√

λ
+ 1

) s4
2

(A + i
√

λ, B) A2 − [A + (i + 1)
√

λ]2

0 � x
√

λ � ∞ P (s3,s4)
n

(
1+λx2

x
√

λ

)
+ B2

A2 − B2

[A+(i+1)
√

λ]2

A2+B2+A
√

λ

λx2 − B(2A +

λ)
√

1+λx2

λx2 +
A2, A < B

A
√

1+λx2

x
√

λ
− B 1

x
√

λ
n
√

λ(2A − n
√

λ) (
√

1 + λx2 − 1)( r−s
2 )

(
√

1 + λx2 + 1)−( r+s
2 )

(A − i
√

λ, B)
√

λ[2A − (2i + 1)
√

λ]

0 � x
√

λ � ∞ P
(r−s− 1

2 ,−r−s− 1
2 )

n (
√

1 + λx2)

A2+B2−A
√|λ|

1+λx2 − B(2A −√|λ|) x
√|λ|

1+λx2 − A2

A
x
√|λ|√
1+λx2 − B 1√

1+λx2 n
√|λ|(2A + n

√|λ|) (1 − x
√|λ|)( s′−r′

2 )(1 +

x
√|λ|)( r′+s′

2 )

(A + i
√|λ|, B)

√|λ| [2A + (2i + 1)
√|λ|]

1
−√|λ| � x � 1√|λ| P

(s′−r ′− 1
2 ,s′+r ′− 1

2 )
n

(
x
√|λ|)

A(A−√|λ|)
1+λx2 − 2B

x
√|λ|

1+λx2 −
A2 + B2

A2

A
x
√|λ|√
1+λx2 − B

A

B2

A2 − A2 + (A +
n
√|λ|)2 −

B2

(A+n
√|λ|)2

(
λx2

1+λx2 − 1
)−( s′+n

2 )

e−a
√|λ|x (A + i

√|λ|, B) B2

A2 − B2

[A+(i+1)
√|λ|]2

1
−√|λ| � x � 1√|λ| P (−s′−n−ia,−s′−n+ia)

n

(
−i x

√|λ|√
1+λx2

)
−A2 +[A+(i+1)

√|λ|]2

5
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2.1. Relation between the �-deformed Hermite polynomial and Jacobi polynomial,
generating function, recursion relation

Here we shall obtain a correspondence between the �-deformed Hermite polynomials [21]
and Jacobi polynomials. We recall that the Hamiltonian for the nonlinear oscillator is given
by [21]

H = −1

2
(1 + λx2)

d2

dx2
− 1

2
λx

d

dx
+

g

2

(
x2

1 + λx2

)
.

After introducing adimensional variables (y,�) as was done in [21]

y = √
αx, � = λ

α
, (20)

the Schrödinger equation Hψ = εψ reduces to[
−1

2
(1 + �y2)

d2

dy2
− 1

2
�y

d

dy
+

1 + �

2

(
y2

1 + �y2

)]
ψ = εψ. (21)

The eigenvalues and eigenfunctions for � < 0 are [21]

ψm(y,�) = Hm(y,�)(1 − |�|y2)
1

(2|�|)

εm = (
m + 1

2

) − 1
2m2�, m = 0, 1, 2, . . . ,

(22)

where Hm(y,�) is the �-deformed Hermite polynomial whose Rodrigues formula and
generating function are given in (27). For � > 0,

ψm(y,�) = Hm(y,�)(1 + �y2)−
1

2�

εm = (
m + 1

2

) − 1
2m2�, m = 0, 1, 2 · · · , N�,

(23)

where N� denotes the greatest integer lower than m�

(= 1
�

)
. On the other hand, putting

B = 0 and A = α√
λ

in solution (19) of equation (11), the eigenfunctions of equation (21) can
be written in terms of the Jacobi polynomial as

ψn(y) = Nn(1 + �y2)−
1

2� P
(− 1

2 − 1
�

,− 1
2 − 1

�
)

n (iy
√

�), n = 0, 1, 2 . . . <
1

�
(� > 0). (24)

For � < 0, putting B = 0, A = α√|λ| in the wavefunction of the fifth entry of table 1 and using
(20), we obtain

ψn(y) = Nn(1 + �y2)−
1

2� P
(− 1

2 − 1
�

,− 1
2 − 1

�
)

n (y
√

|�|), n = 0, 1, 2 . . . (� < 0). (25)

Comparing equations (22) and (25) and also equations (23) and (24), it is possible to derive
a relation between the �-deformed Hermite polynomial Hn(y,�) and the Jacobi polynomial
P

(α,β)
n (x) as

P
(− 1

2 − 1
�

,− 1
2 − 1

�
)

n (iy
√

�) = 1

n!

(
1

2i
√

�

)n

Hn(y,�), ∀�. (26)

The Rodrigues formula and the generating function for the �-deformed Hermite polynomial
Hn(y,�) are given by [21]

Hn(y,�) = (−1)nz
1
�

+ 1
2

y

dn

dyn

[
zn
yz

−( 1
�

+ 1
2 )

y

]
, zy = 1 + �y2,

F(t, y,�) = (1 + �(2ty − t2))
1
� .

(27)

It was shown [21] that the polynomials obtained from the generating function F(t, y,�)

with those obtained from the Rodrigues formula are essentially the same and only differ in

6
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the values of the global multiplicative coefficients. We have observed that if the generating
function F(t, y,�) is taken as

(1 + �(2ty − t2))
1
� =

∞∑
n=0

1

2n

(− 1
�

)
n(

1
2 − 1

�

)
n

Hn(y,�)
tn

n!
, (28)

where (a)n represents the Pöchhammer symbol given by (a)n = 
(a+n)


(a)
, then the polynomials

obtained from the above relation are exactly similar to those obtained from the Rodrigues
formula given in equation (27).

Correspondingly, the recursion relations are obtained as

(�(2n + 1) − 2)[2(1 − n�)yHn(y,�) + (�(2n − 1) − 2)nHn−1(y,�)]

= (n� − 2)Hn+1(y,�) (29)

and

(�(n − 2) − 2)[2(�(2n − 1) − 2)nHn(y,�) − (�(n − 1) − 2)H′
n(y,�)]

= n�(�(2n − 1) − 2)[2(�(n − 2) − 2)yH′
n−1(y,�)

− (n − 1)(�(2n − 3) − 2)H′
n−2(y,�)], (30)

where the ‘prime’ denotes differentiation with respect to y. For � → 0, equations (29) and
(30) give the recursion relations for the Hermite polynomial [24].

3. Shape invariance approach to supersymmetric PDMSE

The supersymmetric approach to PDMSE [5] may be discussed either by reducing PDMSE
to a constant mass Schrödinger equation or by starting with modified intertwining operators
consisting of first-order differential operators. Here, we shall be following the latter approach.
Thus, we consider operators of the form

A = Px − iW(x), A† = Px + iW(x), Px = 1√
m(x)

(
−i

d

dx

)
. (31)

We now consider the supercharges Q,Q† defined by

Q =
(

0 0
A 0

)
, Q† =

(
0 A†

0 0

)
. (32)

The supersymmetric Hamiltonian is then obtained as

H PDM = {Q,Q†} =
(

H PDM
− 0
0 H PDM

+

)
=

(
A†A 0

0 AA†

)
, (33)

where the component Hamiltonians are given by

H PDM
± = − 1

m(x)

d2

dx2
+

(
m′

2m2

)
d

dx
+ W 2 ± W ′

√
m

. (34)

The Hamiltonians H PDM
± are supersymmetric partners and the potentials are

V PDM
± = W 2(x) ± W ′(x)√

m(x)
. (35)

It can be easily seen that the following commutation and anticommutation relations

Q2 = Q†2 = [Q,H PDM] = [Q†,H PDM] = 0

{Q,Q†} = {Q†,Q} = 0 (36)

7
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together with equation (33) complete the standard supersymmetry algebra [22, 25]. For
unbroken supersymmetry (SUSY), the ground state of H− has zero energy

(
E

(−)
0 = 0

)
provided the ground-state wavefunction ψ

(−)
0 (z) given by

(
Aψ

(−)
0 = 0

)
ψ

(−)
0 (x) = N0 exp

[
−

∫ x √
m(y)W(y) dy

]
(37)

is normalizable. In this case it can be shown that, apart from the ground state of H−, the
partner Hamiltonians H± have identical bound-state spectra. In particular, they satisfy

E
(−)
n+1 = E(+)

n , n = 0, 1, 2 . . . . (38)

The eigenfunctions of H± corresponding to the same eigenvalue are related by

Aψ
(−)
n+1 = (

E(+)
n

) 1
2 ψ(+)

n (x)

A†ψ(+)
n (x) = (

E(+)
n

) 1
2 ψ

(−)
n+1(x).

(39)

It may be noted here that the superpotential W(x) and therefore the factorization of the
Hamiltonian could be generated from the ground-state solution of the equation. In a remarkable
paper [26], Gendenshtein explored the relationship between SUSY and solvable potentials.
The pair of potentials V±(x, a0), a0 being a set of parameters, is called shape invariant if it
satisfies the relationship [5, 22]

V+(x, a0) = W 2(x, a0) + W ′(x, a0)

= W 2(x, a1) − W ′(x, a1) + R(a0)

= V (x, a1) + R(a0),

(40)

where a1 is some function of a0 and R(a0) is independent of x. When SUSY is unbroken, the
energy spectrum of any shape-invariant potential is given by [22]

E(−)
n =

n−1∑
i=0

R(ai), E
(−)
0 = 0. (41)

We are now going to study the factorization and the shape invariance property of the potentials
for PDMSE. As an example, let us consider the generalized nonlinear oscillator of section 2.
For this, it is now necessary to choose the superpotential W(x) so that H− can be identified
with the Hamiltonian of equation (11). In this case, we choose the superpotential to be

W = A

√
λx√

1 + λx2
+ B

1√
1 + λx2

. (42)

Therefore, the Hamiltonians H PDM
− and H PDM

+ can be factorized as

H PDM
− = A†A

= −(1 + λx2)
d2

dx2
− λx

d

dx
+

B2 − A2 − A
√

λ

1 + λx2
+ B(2A +

√
λ)

( √
λx

1 + λx2

)
+ A2

(43)
H PDM

+ = AA†

= −(1 + λx2)
d2

dx2
− λx

d

dx
+

B2 − A2 + A
√

λ

1 + λx2
+ B(2A −

√
λ)

( √
λx

1 + λx2

)
+ A2.

These two Hamiltonians are related by

H PDM
+ (x;A,B) = H PDM

− (x;A −
√

λ,B) +
√

λ(2A −
√

λ) (44)

so that they satisfy the shape invariance condition

H PDM
+ (x, a0) = H PDM

− (x, a1) + R(a0), (45)

where {a0} = (A,B), {a1} = (A − √
λ,B) and R(a0) = √

λ(2A − √
λ).

8
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The ground state ψ0(x, a0) of the Hamiltonian H PDM
− is found by solving Aψ0(x, a0) = 0

and has a zero energy, i.e.

H PDM
− (x, a0)ψ0(x, a0) = 0. (46)

Now using (45) we can see that ψ0(x, a1) is an eigenstate of H PDM
+ with the energy E1 = R(a0),

because

H PDM
+ (x, a0)ψ0(x, a1) = H PDM

− (x, a1)ψ0(x, a1) + R(a0)ψ0(x, a1)

= R(a0)ψ0(x, a1) (using (46)). (47)

Next, using the intertwining relation H PDM
− (x, a0)A

†(x, a0) = A†(x, a0)H
PDM
+ (x, a0) and

equation (45), we see that

H PDM
− (x, a0)A

†(x, a0)ψ0(x, a1) = A†(x, a0)H
PDM
+ (x, a0)ψ0(x, a1)

= A†[H PDM
− (x, a1) + R(a0)]ψ0(x, a1) (48)

and hence using (46), we arrive at

H PDM
− (x, a0)A

†(x, a0)ψ0(x, a1) = R(a1)A
†(x, a0)ψ0(x, a1). (49)

This indicates that A†(x, a0)ψ0(x, a1) is an eigenstate of H PDM
− with an energy E1 = R(a0).

Now iterating this process, we will find the sequence of energies for H PDM
− as

E(−)
n =

n−1∑
i=0

R(ai) = n
√

λ(2A − n
√

λ), E
(−)
0 = 0, (50)

with corresponding eigenfunctions being

ψn(x, a0) = A†(x, a0)A
†(x, a1) . . . A†(x, an−1)ψ0(x, an), (51)

where

ai = f (ai−1) = f (f (. . . (f (a0)))︸ ︷︷ ︸
i times

= (A − i
√

λ,B) and R(ai) =
√

λ[2(A − i
√

λ) −
√

λ].

We have found a number of other potentials which are shape invariant for the same mass
function. For all these potentials, the energy, wavefunctions and other parameters related to
the shape invariance property are given in table 1.

3.1. Shape invariance approach to PDMSE with broken supersymmetry

When supersymmetry is broken, neither of the wavefunctions ψ
(±)
0 (x) ≈

exp[± ∫ x √
m(y)W(y) dy] is normalizable and in this case all the energy values are degenerate,

i.e. H+ and H− have identical energy eigenvalues [22, 26]

E(−)
n = E(+)

n (52)

with ground-state energies greater than zero. So far as we know, little attention has been
paid till now to study problems involving broken SUSY in the case of PDMSE. Broken
supersymmetric shape invariant systems in the case of a constant mass Schrödinger equation
have been discussed in [27]. Below, we illustrate the two-step procedure discussed in [28] for
obtaining the energy spectra in PDMSE when the SUSY is broken. For this, we consider the
superpotential as

W(x,A,B) = A
√

|λ| x√
1 + λx2

− B√|λ|

√
1 + λx2

x
, 0 < x <

1√|λ| , λ < 0. (53)

9
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Then the supersymmetric partner potentials are obtained using (35) as

V−(x,A,B) = A(A − √|λ|)
1 + λx2

− B(B − √|λ|)
λx2

− (A + B)2

V+(x,A,B) = A(A +
√|λ|)

1 + λx2
− B(B +

√|λ|)
λx2

− (A + B)2.

(54)

The ground-state wavefunction is obtained from (37) as

ψ
(−)
0 ∼ x

B√|λ| (1 + λx2)
A

2
√|λ| . (55)

For A > 0, B > 0 the ground-state wavefunction ψ
(−)
0 is normalizable which means that the

SUSY is unbroken. But for A > 0, B < 0 and A < 0, B > 0, neither of ψ
(±)
0 is normalizable.

Hence, SUSY is broken in both cases.
We shall discuss the case A > 0, B < 0. In this case, the eigenstates of V±(x,A,B) are

related by

ψ(+)
n (x, a0) = A(x, a0)ψ

(−)
n (x, a0)

ψ(−)
n (x, a0) = A†(x, a0)ψ

(+)
n (x, a0),

E(−)
n (a0) = E(+)

n (a0).

(56)

Now we can show that the potentials in equation (54) are shape invariant by two different
relations between the parameters.

Step 1. The potentials of equation (54) are shape invariant if we change A → A +√|λ| and B → B +
√|λ|. The shape invariant condition is given by

V+(x,A,B) = V−(x,A +
√

|λ|, B +
√

|λ|) + (A + B + 2
√

|λ|)2 − (A + B)2. (57)

Now for B < − 1√|λ| , it is seen that the superpotential (53) resulting from the change of

parameters as above falls in the class of a broken SUSY problem for which E
(−)
0 
= 0. Though

the potentials of equation (54) are shape invariant but we are unable to determine the spectra
for these potentials because of the absence of a zero energy ground state.

Another way of parameterizations A → A +
√|λ| and B → −B gives us

V+(x,A,B) = V−(x,A +
√

|λ|,−B) + (A − B +
√

|λ|)2 − (A + B)2, (58)

which shows that V− and V+ are shape invariant. This change of parameters (A →
A +

√|λ| and B → −B) leads to a system with unbroken SUSY since the parameter B
changes sign. Hence, the ground-state energy of the potential V−(x,A +

√|λ|,−B) is zero.
From relation (58), we observe that V+(x,A,B) and V−(A +

√|λ|,−B) differ only by a
constant; hence, we have

ψ+(x,A,B) = ψ−(x,A +
√

|λ|,−B)

E(+)
n (A,B) = E(−)

n (x,A +
√

|λ|,−B) + (A − B +
√

|λ|)2 − (A + B)2.
(59)

Thus, if we can evaluate the spectrum and energy eigenfunctions of unbroken SUSY
H PDM

− (x,A +
√|λ|,−B), then we can determine the spectrum and eigenfunctions

H PDM
+ (x,A,B) with broken SUSY. In the second step, we will do this.

Step 2. With the help of shape invariant formalism in the case of unbroken SUSY for PDMSE
(see section 3), we obtain a spectrum and eigenfunctions for V−(x,A +

√|λ|,−B) as

E(−)
n (A +

√
|λ|,−B) = (A − B +

√
|λ| + 2n

√
|λ|)2 − (A − B +

√
|λ|)2

ψ(−)
n (x,A +

√
|λ|,−B) ∝ x

B√|λ| (1 + λx2)
A

2
√|λ| P

( B√|λ| − 1
2 , A√|λ| − 1

2 )

n (1 + 2λx2).

(60)

10
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Now using (60), (59) and (56), we obtain a spectrum and eigenfunctions for V −(x,A,B) with
broken SUSY as

E(−)
n (A,B) = (A − B +

√
|λ| + 2n

√
|λ|)2 − (A + B)2

ψ(−)
n (x,A,B) ∝ x

1−B√|λ| (1 + λx2)
A

2
√|λ| P

( 1
2 − B√|λ| ,

A√|λ| − 1
2 )

n (1 + 2λx2).
(61)

A similar approach can be applied in the case of A < 0 and B > 0. In this case, we change
(A,B) into (−A,B +

√|λ|) and the shape invariance condition is

V+(x,A,B) = V−(x,−A,B +
√

|λ|) + (B − A +
√

|λ|)2 − (A + B)2, (62)

and

E(−)
n (A,B) = (B − A +

√
|λ| + 2n

√
|λ|)2 − (A + B)2

ψ(−)
n (x,A,B) ∝ x

1−A√|λ| (1 + λx2)
B

2
√|λ| P

( B√|λ| − 1
2 , A√|λ| − 1

2 )

n (1 + 2λx2).

(63)

4. Exactly solvable PT symmetric potentials in PDMSE

Here we shall find exactly solvable complex potentials, some of which are related to the
nonlinear oscillator potential, within the framework of PDMSE. Before we consider any
particular potential, let us note that a quantum mechanical Hamiltonian H is said to be PT
symmetric [28] if

PT H = HPT , (64)

where P is the parity operator acting as spatial reflection and T stands for time reversal, acting
as the complex conjugation operator. Their action on the position and momentum operators
are given by

P : x → −x, p → −p, T : x → x, p → −p, i → −i. (65)

For a constant mass Schrödinger Hamiltonian, the condition for PT symmetry reduces to
V (x) = V ∗(−x). However in the case of position-dependent mass, an additional condition is
required. To see this we note that in the present case, the Hamiltonian is of the form

H = − 1

2m(x)

d2

dx2
− m′(x)

2m2(x)

d

dx
+ V (x). (66)

From (65), it follows that the conditions for the Hamiltonian (66) to be PT symmetric are

m(x) = m(−x), V (x) = V ∗(−x). (67)

It may be pointed out that here we are working with a mass profile m(x) = (1 + λx2)−1

which is an even function and consequently satisfies the first condition of (67). To generate
non-Hermitian interaction in the present case, we introduce a complex coupling constant. As
an example, let us first consider the potential appearing in (11). It can be seen from (18) that
the energy for this potential does not depend on one of the potential parameters, namely B.
Thus, we consider the complex potential

V (x) =
[

B2 − A2 − A
√

λ

1 + λx2
+ iB(2A +

√
λ)

( √
λx

1 + λx2

)
+ A2

]
. (68)

From (68), it can be easily verified that V (x) = V ∗(−x) so that the Hamiltonian (66) with this
potential is PT symmetric. In this case, the spectrum is real and given by (18). Proceeding
in a similar way, we have obtained the spectrum of a number of PT symmetric potentials and
the results are given in table 2. Incidentally, all the potentials in table 2 are shape invariant
and the results can also be obtained algebraically.
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Table 2. Exactly solvable PT symmetric potentials, where s = A√
λ
, r = i B√

λ
, r1 = i B

λ
, a = r1

s−n
, s1 = s −n+a, s2 = s −n−a, s3 = a−n−s, s4 = −(s +n+a), s′ = A√|λ| &r ′ = i B√|λ| .

The first four entries correspond to λ > 0 and the last two correspond to λ < 0.

V (x) W(x) En ψn(x)

−B2−A2−A
√

λ

1+λx2 + iB(2A +
√

λ)
√

λx

1+λx2 + A2 A
√

λx√
1+λx2 + iB 1√

1+λx2 n
√

λ(2A − n
√

λ) in(1 + λx2)− s
2 e−rtan−1(x

√
λ)

P
(ir−s− 1

2 ,−ir−s− 1
2 )

n

(
ix

√
λ
)

A2 − B2

A2 − A(A+
√

λ)

1+λx2 + i2B
√

λx√
1+λx2 , B < A2 A

√
λx√

1+λx2 + i B

A
A2 − B2

A2 − (A − n
√

λ)2 + B2

(A−n
√

λ)2

(
1 − x

√
λ√

1+λx2

) s1
2

(
1 + x

√
λ√

1+λx2

) s2
2

P (s1,s2)
n

(
x
√

λ√
1+λx2

)
A2 − B2

A2 − 2iB
√

1+λx2√
λx

+ A(A−√
λ)

λx2 , B > A2 i B

A
− A

√
1+λx2

x
√

λ
A2 − B2

A2 − (A + n
√

λ)2 + B2

(A+n
√

λ)2

(√
1+λx2

x
√

λ
− 1

) s3
2

(√
1+λx2

x
√

λ
+ 1

) s4
2

0 � x
√

λ � ∞ P (s3,s4)
n

(
1+λx2

x
√

λ

)
A2−B2+A

√
λ

λx2 − iB(2A + λ)
√

1+λx2

λx2 A2, A < B A
√

1+λx2

x
√

λ
− iB 1

x
√

λ
n
√

λ(2A − n
√

λ) (
√

1 + λx2 − 1)( r−s
2 )(

√
1 + λx2 + 1)−( r+s

2 )

0 � x
√

λ � ∞ P
(r−s− 1

2 ,−r−s− 1
2 )

n (
√

1 + λx2)

A2−B2−A
√|λ|

1+λx2 − iB(2A − √|λ|) x
√|λ|

1+λx2 − A2 A
x
√|λ|√
1+λx2 − iB 1√

1+λx2 n
√

λ(2A + n
√|λ|) (1 − x

√|λ|)( s′−r′
2 )(1 + x

√|λ|)( r′+s′
2 )

1
−√|λ| � x � 1√|λ| P

(s′−r ′− 1
2 ,s′+r ′− 1

2 )
n (x

√|λ|)
A(A−√|λ|)

1+λx2 − 2iB x
√|λ|

1+λx2 − A2 − B2

A2 A
x
√|λ|√
1+λx2 − i B

A
−B2

A2 − A2 + (A + n
√|λ|)2 + B2

(A+n
√|λ|)2

(
λx2

1+λx2 − 1
)−( s′+n

2 )

e−a
√|λ|x

1
−√|λ| � x � 1√|λ| P (−s′−n−ia,−s′−n+ia)

n

(
−i x

√|λ|√
1+λx2

)
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5. Quasi-exactly solvable PT symmetric potentials in PDMSE

The complex sextic potential in the constant mass Schrödinger equation has been discussed
in [29]. By using transformation (12) for λ > 0, we obtain the corresponding quasi-exactly
solvable potentials in PDMSE.

For λ > 0, the potential is taken as

V (x) =
6∑

k=1

ck

λ
k
2

(sinh(x
√

λ))−k, (69)

where for V (x) to be PT symmetric, c1, c3, c5 are purely imaginary and c2, c4, c6 are real.
Following [29], the ansatz for the wavefunction is taken as

ψ(x) = f (x) exp

⎛
⎝−

4∑
j=1

bj

λ
j

2

(sinh(x
√

λ))−j

⎞
⎠ , (70)

where f (x) is some polynomial function of x. We shall focus on the following choices of
f (x):

(a)f (x) = 1

(b)f (x) = (sinh(x
√

λ))−1

√
λ

+ a0

(c)f (x) = (sinh(x
√

λ))−2

λ
+ a1

(sinh(x
√

λ))−1

√
λ

+ a0.

For complex potentials, a0 is purely imaginary in (b), but in (c) a1 is purely imaginary, but a0

is real.
Without going into the details of calculation, which are quite straightforward, let us

summarize our results.

Case 1. f (x) = 1
In this case, the relation between the parameters ci and bi is found to be

c1 = −3b3 + 2b1b2, c2 = −6b4 + 3b1b3 + 2b2
2, c3 = 4b1b4 + 6b2b3

c4 = 8b2b4 + 9
2b2

3, c5 = 12b3b4, c6 = 8b2
4, (71)

and

E = b2 − 1
2b2

1. (72)

Without loss of generality, we can choose c6 = 1
2 which fixes the leading coefficient of V (x).

It gives b4 = ± 1
4 . Taking the positive sign to ensure the normalizability of the wavefunction,

we obtain

ψ(x) = exp

(
− b1(sinh(x

√
λ))−1

√
λ

− b2(sinh(x
√

λ))−2

λ
− b3(sinh(x

√
λ))−3

λ
√

λ

− (sinh(x
√

λ))−4

4λ2

)
. (73)

Now if b1 and b3 are purely imaginary, then c1, c3, c5 are also purely imaginary. In that case,
V (x) in equation (69) and ψ(x) in equation (70) are PT symmetric and E is real.
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Case 2. f (x) = (sinh(x
√

λ))−1√
λ

+ a0, where a0 is purely imaginary.
In this case, the wavefunction is of the form

ψ(x) =
(

(sinh(x
√

λ))−1

√
λ

+ a0

)

exp

(
−b1(sinh(x

√
λ))−1

√
λ

− b2(sinh(x
√

λ))−2

λ
− b3(sinh(x

√
λ))−3

λ
√

λ
− (sinh(x

√
λ))−1

4λ2

)
.

(74)

In this case, the relation between the parameters is given by

c1 = −6b3 + 2b1b2 + a0, c2 = − 5
2 + 3b1b3 + 2b2

2, c3 = b1 + 6b2b3
(75)

c4 = 2b2 + 9
2b2

3, c5 = 3b3, c6 = 1
2 .

a0 satisfies the condition

a3
0 − 3b3a

2
0 + 2b2a0 − b1 = 0. (76)

The energy is given by

E = − 1
2b2

1 + 3b2 − 3a0b3 + a2
0 . (77)

We now consider two special cases.

(a) b1 = b3 = 0 and a2
0 < 0.

In this case, c1 is purely imaginary and c3 = c5 = 0. Moreover, c1 = a0 = ±i
√

2b2. So
we get two different complex potentials corresponding to the above two values of c1 with the
same real energy eigenvalues. The potential, energy values and the eigenfunctions are given
by

V (x) = 1

2

(sinh(x
√

λ))−6

λ3
+

2b2

λ2
(sinh(x

√
λ))−4

+

(
2b2

2 − 5
2

)
λ

(sinh(x
√

λ))−2 ± i
√

2b2√
λ

(sinh(x
√

λ))−1

E = b2 > 0 (78)

ψ(x) =
(

(sinh(x
√

λ)−1

√
λ

± i
√

2b2

)
exp

(
−b2

λ
(sinh(x

√
λ))−2 − 1

4λ2
(sinh(x

√
λ))−4

)
.

It can be easily seen from the above equations that the potential is PT symmetric, while the
wavefunction is odd under PT symmetry.

(b) b1 = 0, b3 
= 0
Then from (76), we get

a0 = 1
2

(
3b3 ±

√
9b2

3 − 8b2
)
. (79)

So in order to make a0 imaginary, we must have 9b2
3 − 8b2 < 0 or b2

3 = −|b3|2 � 8
9b2.

In this case also there exist two different complex potentials corresponding to two values
of b3 with the same real energy eigenvalues E = 3b2 − 3a0b3 + a2

0 .

Case 3. f (x) = (sinh(x
√

λ))
−2

λ
+ a1

(sinh(x
√

λ))
−1

√
λ

+ a0, where a1 is imaginary and a0 is real.
In this case, the relation between the parameters is given by

a1 = 2b3, a0 = 1
2

(
2b2 − b2

3 ±
√(

2b2 − 3b2
3

)2
+ 2

)
. (80)
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The wavefunction, energy and the potential are of the form

ψ±(x) =
[

(sinh(x
√

λ))−2

λ
+ 2b3

(sinh(x
√

λ))−1

√
λ

+
1

2

(
2b2 − b2

3 ±
√(

2b2 − 3b2
3

)2
+ 2

)]

exp

(
−2b3

(
b2 − b2

3

) (sinh(x
√

λ))−1

√
λ

− b2
(sinh(x

√
λ))−2

λ

− b3
(sinh(x

√
λ))−3

λ
√

λ
− 1

4

(sinh(x
√

λ))−4

λ2

)
(81)

E± = −2b2
3

(
b2 − b2

3

)2
+ 3b2 − b2

3 ±
√(

2b2 − 3b2
3

)2
+ 2 (82)

V (x) = 1

2λ3
(sinh(x

√
λ))−6 +

3b3

λ2
√

λ
(sinh(x

√
λ))−5 +

(
2b2 + 9

2

)
λ2

(sinh(x
√

λ))−4

+
2b3

λ
√

λ

(
4b2 − b2

3

)
(sinh(x

√
λ))−3+

[
2
(
b2

2 + 3b2b
2
3 − 3b4

3

)− 7
2

]
λ

(sinh(x
√

λ))−2

+
b3

(
4b2

2 − 4b2b
2
3 − 7

)
√

λ
(sinh(x

√
λ))−1. (83)

Results (80)–(83) are valid for both real and purely imaginary bi . When bi are purely imaginary,
the potential and wavefunction are PT symmetric while for real biPT symmetry is broken.
In particular, when b3 is purely imaginary we have a complex PT symmetric two-parameter
family of potentials corresponding to two values of a0 with two distinct real eigenvalues.

6. Discussion

We have studied various exactly solvable as well as quasi-exactly solvable and non-Hermitian
generalizations of the quantum nonlinear oscillator with the mass function

(
1

1+λx2

)
. We have

also obtained a closed form normalization constant for the eigenfunctions of a quantum
nonlinear oscillator. A relationship between the λ-deformed Hermite polynomial and Jacobi
polynomial has also been found. By exploiting the supersymmetry of PDMSE, we have
obtained some shape invariant potentials corresponding to this particular mass function. We
have considered the shape invariance approach to PDMSE with broken supersymmetry as
well. As for the future work, we feel that it would be interesting to examine the Lie algebraic
symmetry of the exactly solvable potentials. In view of the fact that in the present case
transformation (12) is invertible, it seems promising to study whether or not the Lie algebraic
symmetry of the constant mass system can be transported back to the non-constant mass case.
Another interesting area of investigation would be to study the classical analogs of some of
the models (especially the PT symmetric ones) considered here.
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Appendix

For B = 0, A = α√
λ

, the potential of equation (11) and its energy eigenvalues (18) reduce to

15



J. Phys. A: Math. Theor. 42 (2009) 285301 B Midya and B Roy

V (x) =
(

−α2

λ
− α

)
(1 + λx2)−1 +

α2

λ
(A.1)

En = 2nα − nλ. (A.2)

For |x| < 1√
λ

, potential (A.1) can be written as

V (x) =
(

−α2

λ
− α

)
(1 − λx2 + λ2x4 − λ3x6 + · · ·) +

α2

λ

= α2x2 − λ(α2x4 − λα2x6 + · · ·) + λ(αx2 − λαx4 + · · ·) − α. (A.3)

For λ → 0, the potential reduces to

V (x) = α2x2 − α. (A.4)

It is clear from (A.4) and (A.2) that for λ → 0, potential (11) and the energy eigenvalues (18)
reduce to those of a simple harmonic oscillator.

For A = α√
λ
, B = 0 and using relation (26), the expression for the wavefunction (19) is

ψn(x) = N ′
n(1 + λx2)−

2α
λ Hn

(√
αx,

λ

α

)
, (A.5)

where

N ′
n = 1

2nn!

(α

λ

) n
2
Nn

=
[

αn
(

α
λ

− n
)



(
α
λ

− n + 1
2

)



(
α
λ

− n + 1
2

)
πn!22n− 2α

λ λn− 1
2 


(
2α
λ

− n + 1
)

]1/2

. (A.6)

Now for λ → 0, the λ-deformed Hermite polynomial becomes the conventional Hermite
polynomial Hn [21]. Consequently, at the λ → 0 limit the unnormalized wavefunction given
in equation (A.5) reduces to

ψn(x) ∝ e− αx2

2 Hn(
√

αx). (A.7)

Using the asymptotic formula 
(az + b) ∼ √
2π e−az(az)az+b− 1

2 (see 6.1.39 of [24]) in (A.6),
we have

N ′
n =

(√
α − nλ√

α√
π2nn!

)1/2

. (A.8)

Therefore from equations (A.7) and (A.8), it follows that for λ → 0 the wavefunction given
in equation (19) reduces to that of a simple harmonic oscillator.
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